国家开放大学大作业答案

国开学习网电大数学思想与方法形考作业答案1-10

本文包含:

数学思想与方法形考作业第一关答案
数学思想与方法形考作业第二关答案
数学思想与方法形考作业第三关答案
数学思想与方法形考作业第四关答案
数学思想与方法形考作业第五关答案
数学思想与方法形考作业第六关答案
数学思想与方法形考作业第七关答案
数学思想与方法形考作业第八关答案
数学思想与方法形考作业第九关答案
数学思想与方法形考作业第十关答案
------------------------
数学思想与方法形考作业第一关答案
“巴比伦人是最早将数学应用于(商业)的。在现有的泥板中有复利问题及指数方程。
:运输
;工程
;商业
;农业”
“《九章算术》成书于(西汉末年),它包括了算术、代数、几何的绝大部分初等数学知识。
:汉朝
;战国时期
;西汉末年
;商朝”
“金字塔的四面都正确地指向东南西北,在没有罗盘的四、五千年的古代,方位能如此精确,无疑是使用了(天文测量)的方法。
:代数计算
;几何测量
;天文测量
;占卜”
“在丢番图时代(约250)以前的一切代数学都是用(文字)表示的,甚至在十五世纪以前,西欧的代数学几乎都是用(文字)表示。
:符号,符号
;符号,文字
;文字,文字
;文字,符号”
“古埃及数学最辉煌的成就可以说是(四棱锥台体积公式)的发现。
:四棱锥台体积公式
;球体积公式
;圆面积公式
;进位制的发明”
“《几何原本》中的素材并非是欧几里得所独创,大部分材料来自同他一起学习的(柏拉图学派)。
:亚历山大学派
;毕达哥拉斯学派
;爱奥尼亚学派
;柏拉图学派”
“古印度人对时间和空间的看法与现代天文学十分相像,他们认为一劫(“劫”指时间长度)的长度就是(100亿年),这个数字和现代人们计算的宇宙年龄十分接近。
:100亿年
;10亿年
;1000亿年
;1亿年”
“根据亚里士多德的想法,一个完整的理论体系应该是一种演绎体系的结构,知识都是从(初始原理)中演绎出的结论。
:初始原理
;自然命题
;一般原理
;最终原理”
“欧几里得的《几何原本》几乎概括了古希腊当时所有理论的(数论及几何学),成为近代西方数学的主要源泉。
:代数与数论
;数论及几何学
;几何
;几何与代数”
“数学在中国萌芽以后,得到较快的发展,至少在(六七千年前)已经形成了一些几何与数目概念。
:春秋战国时期
;六七千年前
;五千年前
;新石器时代”
数学思想与方法形考作业第二关答案
“欧几里得的《几何原本》是一本极具生命力的经典著作,它的著名的平行公设是(同平面内一条直线和另外两条直线相交,若在直线同侧的两个内角之和小于180°,则这两条直线经无限延长后在这一侧一定相交)。
:线段(有限直线)可以无限地延长
;以任一点为圆心,任意长为半径,可作一圆
;同平面内一条直线和另外两条直线相交,若在直线同侧的两个内角之和小于180°,则这两条直线经无限延长后在这一侧一定相交
;过两点能作且只能作一直线”
“《九章算术》是我国古代的一本数学名著。“算”是指(算筹),“术”是指(解题方法)。
:算筹技术
;算筹解题方法
;算法证明
;算法技术”
“《几何原本》就是用(逻辑)的链子由此及彼的展开全部几何学,它的诞生,标志着几何学已成为一个有着比较严密的理论系统和科学方法的学科。
:逻辑
;分析
;统计
;代数”
“《几何原本》最主要的特色是建立了比较严格的几何体系,在这个体系中有四方面主要内容:(定义、公理、公设、命题)。
:定理、公理、公设、命题
;定义、公理、公设、命题
;定义、公式、公设、命题
;定义、公理、公设、推论”
“《几何原本》的理论体系并不是完美无缺的,比如,对直线的定义实际上是用一个未知的定义来解释另一个未知的定义,这样的定义不可能在(逻辑推理)中起什么作用。
:计算算法
;逻辑推理
;几何作图
;模型方法”
“《九章算术》是中国汉族学者在古代第一部数学专著,是“算经十书”中最重要的一种,成书于(公元一世纪)左右。
:公元一世纪
;300B.C.
;300A.C.
;公元前一世纪”
“《九章算术》是中国汉族学者在古代第一部数学专著,它的内容十分丰富,全书采用(问题形式)的形式,与生产、生活实践密切相关。
:叙述形式
;问题形式
;证明形式
;推论形式”
“《九章算术》确定了中国古代数学的框架,不仅以(开放的)归纳体系、(算法化的)内容、(模型化的)方法为特点影响我国数学成就的建立,而且在培养和造就我国数学家方面起到了促进作用。
:封闭的、逻辑化的、模型化的
;开放的、算法化的、模型化的
;开放的、逻辑化的、演绎化的
;封闭的、算法化的、演绎化的”
“《九章算术》确定了中国古代数学的框架,以计算为中心的特点。《九章算术》亦有其不容忽视的缺点:没有任何(数学概念,)数学概念的定义,也没有给出任何(推导和证明)。
:代数概念,推导和证明
;数学概念,推导和证明
;集合概念,推导和证明
;几何概念,推导和证明”
“《九章算术》的叙述方式以(归纳,)为主,先给出若干例题,再给出解法;《几何原本》的叙述方以(演绎)为主,先给出公理,再通过逻辑推出其他命题。
:反驳,演绎
;计算,证明
;化归,推论
;归纳,演绎”
数学思想与方法形考作业第三关答案
“算术解题方法的基本思想是:首先要围绕所求的数量,收集和整理各种(已知数据),并依据问题的条件列出用(已知数据)表示所求数量的算式,然后通过四则运算求得算式的结果。
:未知数据,未知数据
;已知数据,未知数据
;已知数据,已知数据
;已知数据,未知数据”
“就数学发展的历史进程来看,从算术到代数、从常量数学到变量数学、从确定数学到随机数学等是数学思想方法的几次重要突破。代数形成解决了具有复杂(数量关系)的问题,变量数学创立刻划了(运动与变化)的事物与现象,随机数学出现揭示了(随机现象)背后所蕴涵的规律。
:数量关系,运动与变化,随机现象
;代数关系、几何问题、统计现象
;映射关系、对应关系、随机现象
;数量关系,运动与变化、统计现象”
“代数不但讨论正整数、正分数和零,而且讨论负数、虚数和复数。其特点是用(字母符号)来表示各种数。
:图示符号
;箭头符号
;数字记号
;字母符号”
“代数学形成过程经历了漫长过程:(文字代数,简写代数,符号代数)。
:文字代数,符号代数,简写代数
;文字代数,简写代数,符号代数
;符号代数,文字代数,简写代数
;文字代数,简写代数,图标代数”
“初等数学都是以(不变的数量和固定的图形)为其研究对象,运用这些知识可以有效地描述和解释相对稳定的事物和现象,对于运动变化的事物和现象,它们显然无能为力。
:不变的数量和变化的图形
;数量和图形
;变化的数字和固定的图形
;不变的数量和固定的图形”
“变量数学产生的数学基础应该是(解析几何、),标志是(微积分)。
:概率统计、微积分
;解析几何、微积分
;线性代数、几何学
;数论初步、几何学”
“从16世纪开始,自然科学研究的中心问题是运动,科学家们相信对各种运动过程和各种变化着的量之间的依赖关系的研究可以用数学来描述。因此,作为运动着的量的一般性质及各个数量之间存在着相依而变的规律,科学家们引出了数学的一个基本概念(函数)。
:积分
;函数
;微分
;导数”
“人们在社会实践活动常常遇到两类截然不同的现象,一类是确定性现象;另一类是随机现象。随机现象并不是杂乱无章的现象,当同类现象大量出现时,从总体上却呈现出一种规律性。于是,一种专门适用于分析随机现象的数学工具——(概率理论与数理统计)诞生了。
:概率理论与数理统计
;希尔伯特空间与集合论
;分形数学与模糊数学
;群论与数论”
“第一次数学危机,是数学史上的一次重要事件,发生于大约公元前400年左右的古希腊时期,自(√2)的发现起,到公元前370年左右,以(无理数)的定义出现为结束标志。这次危机的出现冲击了一直以来在西方数学界占据主导地位的毕达哥拉斯学派。
:√2,无理数
;2√3,无理数
;2√3,有理数
;√2,有理数”
“第二次数学危机,指发生在十七、十八世纪,围绕微积分诞生初期的基础定义展开的一场争论,这场危机最终完善了微积分的定义和与实数相关的理论系统,同时基本解决了第一次数学危机的关于无穷计算的连续性的问题,并且将微积分的应用推向了所有与数学相关的学科中。而这场争论是指(无穷小量究竟是不是零)。
:无穷大量究竟是很大的数
;无穷小量究竟是不是零
;无穷大量究竟是不是有限
;无穷小量是零”
数学思想与方法形考作业第四关答案
“三段论是演绎推理的主要形式,由(大前提、小前提、结论)三部分组成。
:大前提、小推理、结论
;前提、推理、结论
;大前提、小前提、结论
;小前提、大前提、结论”

此内容查看价格为6答案币,请先
本文隐藏(剩余)内容登录购买后显示, 常见问题」或「点此联系我们
如果不显示购买按钮,请复制本页网址换其他浏览器打开
1

评论0

没有账号?注册  忘记密码?

社交账号快速登录